|
|
发表于 2025-12-19 21:08:00
|
显示全部楼层
YOLOV8图片标注/训练/模型转换/测试python源码
YOLOv8是一个先进的目标检测模型,用于实时图像处理。以下是使用Python编写的YOLOv8图片标注、训练、模型转换和测试的代码示例。<br><br>- python<br>import os<br>import yaml<br>from PIL import Image, ImageDraw, ImageFont<br>from onnxruntime.backend import InferenceContext<br>from onnxruntime.modelutils import ConvertModel, convertmodeltoonnx, convertmodeltopt, loadmodelfromonnx<br>from onnxruntime.estimator import Evaluator<br>from onnxruntime.tf2.functions import <br>from yolov8.inference import YOLOv8Inference<br>from yolov8.utils.data import getimagedataloader<br>import numpy as np<br><br>环境准备<br>os.environ["CUDAVISIBLEDEVICES"] = "0"<br>if not os.getenv("ONNXENABLED"):<br> print("ONNX is disabled. Please enable it by setting the environment variable ONNXENABLED=1.")<br>else:<br> from tensorflow.keras.models import loadmodel<br> loadmodelfromonnx(convertmodeltoonnx('yourmodelpath'), 'yolov8')<br><br>目录结构<br>projectroot = "/path/to/your/project"<br>yolov8pt = os.path.join(projectroot, "yolov8pt")<br>images = os.path.join(projectroot, "images")<br>labels = os.path.join(projectroot, "labels")<br>yolov8runs = os.path.join(projectroot, "yolov8runs")<br>customdatayaml = os.path.join(projectroot, "customdata.yaml")<br><br>功能流程<br>def runevaluation():<br> # 加载数据集<br> dataset = loadcustomdata(customdatayaml)<br> # 运行评估模型<br> evaluator = Evaluator()<br> evaluator.evaluate(dataset)<br><br>def runtraining():<br> # 加载数据集<br> dataset = loadcustomdata(customdatayaml)<br> # 运行训练模型<br> model = loadmodelfromonnx(convertmodeltopt(convertmodeltoonnx('yourmodelpath')))<br> model.compile(optimizer='adam', loss='categoricalcrossentropy', metrics=['accuracy'])<br> model.fit(dataset, epochs=10)<br> # 保存最佳参数<br> bestweights = model.getweights()[0]<br> savemodeltofile(model, bestweights, 'bestweights.pt')<br> print("Training completed. Best weights saved to 'bestweights.pt'.")<br><br>def runexport():<br> # 运行模型转换工具<br> converter = ConvertModel()<br> converter.export(model, 'yourmodelname', 'yolov8')<br> print("Model exported successfully.")<br><br>def runinference():<br> # 加载模型<br> model = loadmodelfromonnx(convertmodeltoonnx(convertmodeltopt('yourmodelpath')))<br> # 运行推理<br> results = model.predict(convertmodeltoonnx('yourmodelpath', inputshape=()), inputnames=['image'], outputnames=['result'])<br> # 输出结果<br> for result in results:<br> print(result)
复制代码 <br>以上代码是YOLOv8模型在Python环境下进行标注、训练、模型转换和测试的基本实现。请根据实际情况修改路径和文件名,并确保已经安装了所需的库和模块。<br><br>[本文内容由人工智能AI辅助生成,仅供参考] |
|